Modeling Atmospheric Activity of Cool Stars
Carolus J. Schrijver

Institute: Lockheed Martin Advanced Technology Center

Contact Email: schryver@lmsal.com

Abstract: This review discusses a set of simple models for cool-star activity with which we compute (1) photospheric field patterns on stars of different activity levels, (2) the associated outer-atmospheric field configurations, and (3) the soft X-ray emission that is expected to result from the ensemble of loop atmospheres in the coronae of these stars. The model is based on empirically-determined properties of solar activity. It allows us to extrapolate to stars of significantly higher and lower activity than seen on the present-day Sun through its cycle. With it, we can, for example, gain insight into stellar field patterns (including a possible formation mechanism for polar starspots), as well as in the properties of coronal heating (helpful in the identification of the quiescent coronal heating mechanism). Lacking comprehensive theoretical understanding, the model's reliance on empirical solar data means that the multitude of processes involved are approximated to be independent of rotation rate, activity level, and fundamental stellar parameters, or -- where unavoidably necessary -- assumed to simply scale with activity. An evaluation of the most important processes involved guides a discussion of the limits of the model, of the limitations in our knowledge, and of future needs.

Modeling Atmospheric Activity of Cool Stars [PDF - Type 1 fonts]

Modeling Atmospheric Activity of Cool Stars [PS]

Modeling Atmospheric Activity of Cool Stars [POWERPOINT TALK]


Index Keywords:

Next: Ness
Up: Thursday Index Up: Top Index


Manuscript submitted: 2001-Sep-27
"The Future of Cool-Star Astrophysics", 2003, Eds. A. Brown, G. M. Harper, & T. R. Ayres. Proceedings of 12th Cambridge Workshop on Cool Stars, Stellar Systems, & The Sun,
© 2003 University of Colorado.