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Abstract.

We present results from time dependent numerical simulations of the
hydromagnetic interaction between a rotating T Tauri star and a magnet-
ically coupled Keplerian accretion disk. For a diffusive disk, we find that
most of the toroidal component of the magnetic field is generated within a
thin, shearing boundary layer that forms along the interface between the
disk and the magnetosphere. We describe the properties of the system
when it has attained a rotational equilibrium state in which the stellar
spin-up produced by accretion and structural changes is compensated for
by the spin-down torque arising from the magnetic connection between
the star and the disk.
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1. Introduction

Observations indicate that many T Tauri stars (TTS) rotate relatively slowly,
despite the fact that for at least some of them, structural evolution and/or the
accretion of higher specific angular momentum material from a circumstellar disk
might be expected to lead to higher rates of rotation (e.g., Bouvier et al. 1986;
Hartmann et al. 1986). Apparently, these stars must lose angular momentum
at a rate sufficient to counteract the spin-up that would arise from evolution
and accretion and remain in a state of slow rotation. An obvious candidate for
producing the required angular momentum loss is the torque associated with a
magnetically coupled stellar wind. However, it is difficult to account for the wide
range of rotational velocities that seems to be characteristic of solar-type stars
in young clusters, if wind braking is the sole mechanism for angular momentum
removal during pre-main sequence evolution.

An alternative mechanism is suggested by the observations indicating that
on average, TTS with accompanying disks rotate more slowly than those without
(Bouvier et al. 1993; Edwards et al. 1993). For stars of the former type, a poloidal
magnetic field Bp that pervades the system can furnish the means for efficiently
transferring angular momentum from the star to the disk. In such a system, the
field lines that connect the star to the portion of the disk outside the co-rotation
radius are sheared to produce a toroidal component Bφ. At the surface of the
star, the associated magnetic stress (∝ BpBφ) contributes to a torque that acts
to brake the stellar rotation.

In most models for the rotational evolution of TTS with disks, the mag-
nitude of the spin-down torque is estimated without explicitly treating the dy-
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namics of the magnetic interaction between the star and the disk. Instead, it is
generally assumed that the rate at which Bφ is generated by differential rotation
in the disk equals the the rate at which it is dissipated by turbulent diffusion,
buoyancy, or reconnection. Using simplified expressions to represent these pro-
cesses, estimates for both Bφ and the torque can then be derived (e.g., Ghosh
& Lamb 1979; Cameron & Campbell 1993; Wang 1995; Ghosh 1995; Yi 1995;
Armitage & Clarke 1996). In this paper, we describe preliminary results from
detailed numerical simulations of a magnetically coupled star-disk system. We
compare our dynamical solutions with those obtained using the ‘kinematic’ ap-
proach outlined above, and note some additional features not present in previous
model results.

2. Model

The numerical simulations are carried out using a finite element method to solve
the azimuthal components of the momentum and induction equations in spher-
ical coordinates. We assume that the system is axisymmetric with coincident
magnetic and rotational axes, and that the velocity is purely azimuthal. The
prescribed poloidal magnetic field is nearly dipolar with ∇ × Bp = 0. Bp is
furthermore taken to be independent of time, which is valid provided the con-
ductivity of the disk is not high enough to cause significant wind-up and inflation
of field. At the midplane of the disk (θ = π/2), we require that the angular ve-

locity Ω of the rotational motion remains Keplerian, Ω = ΩK = (GM?/r
3)1/2,

implying that a very efficient mechanism for redistributing angular momentum
operates at that location.

We treat the star as a rigidly rotating, perfect conductor, of mass M? =
M¯, radius R? = 2R¯, and moment of inertia I? = 0.2M?R

2
?. These values

are characteristic of a fully convective, pre-main sequence star of age ∼ 106

years. The magnetosphere is assumed to have a constant mass density, ρm =
10−10 g cm−3, and constant viscous and magnetic Reynolds numbers, Rν = Rη =
103, where these quantities are defined in terms of R? and the Alfvén speed at
the stellar surface. The disk occupies the region 4R? ≤ r ≤ 20R?, | cos θ| ≤ 0.02,
and is represented by a step in the density and Reynolds numbers from their
magnetospheric values to ρd = 10−7 g cm−3 and Rν = Rη = 10.

3. Solution Properties

We solve for the time dependent evolution of Ω and Bφ, starting from an initial
state in which Ω = Bφ = 0 everywhere except along the disk midplane where
Ω = ΩK . At time t = 0, a specified, external torque is applied to the star,
causing it to spin up. The increase in Ω? produced by this torque simulates the
effects of accretion and internal structural changes on the stellar rotation rate.
The simulations reveal that the system eventually attains a steady state in which
the external torque acting on the star is balanced by the magnetic torque arising
the star-disk interaction. Figure 1 shows the steady-state distributions of Ω and
Bφ r sin θ throughout the computational domain for the solution corresponding
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Figure 1. The left half of the figure shows the poloidal field lines
(red), the boundary between the disk and the magnetosphere (dashed
line), and the field line and radius along which Ω and Bφ r sin θ are
plotted in subsequent figures (dotted lines). The right half of the fig-
ure shows Ω (contours) and Bφ r sin θ (bi-logarithmic color scale) for
the steady-state solution discussed in §3. Within the disk, Ω ≈ ΩK

(corresponding to the boundary condition imposed at the midplane of
the disk), while the field is small. Throughout most of the magneto-
sphere, Ω and Bφr sin θ are constant along poloidal field lines. How-
ever, boundary layers exist just above the surface of the star and just
above the surface of the disk.

to the input parameter values given in §2. In this case, Ω? ≈ 6.2Ω¯, so that the
co-rotation radius is rco = (GM?/Ω

2
?)

1/3 ≈ 5.5R?.
Within the disk, Ω ≈ ΩK , and Bφ r sin θ increases linearly with distance s

from the midplane, where s is measured along a poloidal line of force (see the
right panel of Figure 2). In the magnetosphere just above the disk, there is a
thin boundary layer in which the magnitudes of Ω and Bφ change rapidly (see
the left panel of Figure 2). At a given radius r in the boundary layer, Ω assumes
a value intermediate between ΩK(r) and Ω?, while Bφ increases significantly
relative to its value in the disk. Some of the toroidal field generated within this
shear layer diffuses in the disk where it is dissipated. Unlike most kinematic
models, the rate at which Bφ diffuses into the disk from the boundary layer is
much greater than the rate at which Bφ is produced inside the disk by the action
of differential rotation on Bp.

Throughout most of the magnetosphere, Ω and Bφ r sin θ are constant along
poloidal field lines, although the values of these quantities are not, in general,
the same along adjacent lines of force. This feature is a basic property of the
stationary equilibria of rotating, axisymmetric, ideal MHD systems; apparently,
the magnetospheric diffusivities are low enough to permit such behavior in the
present solution. The small but finite values of the viscosity and magnetic
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Figure 2. Angular velocity (solid line) and toroidal field (dashed line)
along the poloidal field line indicated in Figure 1. The vertical dotted
line marks the edge of the disk, and the horizontal dotted line shows
the angular velocity of the star. The left panel shows the entire field
line, while the right panel shows just the part that threads the disk and
a portion of the magnetosphere directly above it. Note the boundary
layers in the magnetosphere overlying both the surface of the star (s =
0) and the surface of the disk. Within the disk, Ω is nearly constant,
while Bφ r sin θ grows approximately linearly with distance from the
midplane.
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Figure 3. Angular velocity (solid line) and toroidal field (dashed line)
along a radius (indicated in Figure 1) that passes through the disk.
Within the disk, Ω ≈ ΩK(r), while most of the region between the
surface of the star and the inner edge of the disk rotates at Ω?. Note
the presence of a region just inside the inner edge of the disk in which
the magnetospheric rotation rate is < Ω?.

diffusivity become important in the magnetospheric layers adjacent to the stellar
surface. As can be seen in Figure 2, within this region magnetic and viscous
forces act to match the particular value of Ω that obtains along a given poloidal
field line to the angular velocity Ω? of the rigidly rotating star.

In the portion of the magnetosphere that is not intercepted by poloidal
field lines connecting the star and the disk, Ω ≈ Ω?, and Bφ is very small (see
Figure 1). However, when the corotation radius is located within the disk, there
are a few field lines that intersect the equatorial plane just inside the inner
edge of the disk, on which Ω is significantly lower that Ω? (see Figure 3). This
feature can be explained as a consequence of the way in which the system of
magnetospheric electrical currents is configured.

In Figure 4, it can be seen that the current density J [= (c/4π)∇× (Bφeφ)]
flows in two closed loops contained within meridional planes. At radii r > rco,
there is a strong cross-field current in the boundary layer that flows radially
outward, and closes by way of field-aligned currents in the magnetosphere and
a surface current in the (perfectly conducting) star. For r < rco, the cross-
field current in the boundary layer is directed radially inward, and again closes
by way of field-aligned currents and a surface current. Inspection of Figure 4
indicates that on this latter circuit, the radial current component is non-zero at
a location just interior to the inner edge of the disk. For the adopted directions
of the stellar magnetic moment and angular momentum vectors, the resulting
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Figure 4. The electric current density, with direction indicated by
arrows and magnitude by the colorscale. The blue line is the poloidal
field line which intersects the equatorial plane at the co-rotation radius.
In most of the magnetosphere, the current is aligned with the poloidal
field lines, but in the boundary layer along the edge of the disk, there is
a strong radial current. The right panel shows a region near the inner
edge of the disk, indicated by the green square in the left panel. Note
that just inside the inner edge of the disk there is a component of the
current directed radially inward, which is necessary to close the current
loop which runs along the surface of the disk. This component gives
rise to a Lorentz force which causes a small region of the magnetosphere
to rotate more slowly than the star.
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Lorentz force, (1/c)J ×Bp, acts to decelerate the the rotational motion of the
magnetosphere at that position.

4. Summary and Discussion

Our dynamical simulations of the magnetic interaction between a TTS and a
diffusive circumstellar accretion disk yield a picture of such a system that differs
in several respects from that assumed in most kinematic models. In particular,
we find that the shearing boundary layer that forms at the disk surface plays
a prominent role in the rotational evolution of the system, being the principal
source of the toroidal field component required to transfer angular momentum
from the star to the disk by magnetic means. The properties of the boundary
layers that occur in our computations are known from previous MHD studies,
having a structure that is analogous to, for example, the shear layer that forms
around a solid body in motion through a highly conducting, magnetized fluid
(e.g., Stewartson 1960a, b). Thus, analysis of our results suggests that the
jumps in the magnitudes of the toroidal field and rotational velocity across the
boundary layer are related according to ∆Bφ ≈

√
4πρm ∆(Ω r sin θ), where ∆

indicates the difference between values on either side of the layer, connected by
the same poloidal field line. A relation of this kind could make possible the
development of a revised kinematic model, incorporating the basic properties of
the present solution without the necessity of performing detailed computations.
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