Ground-based Solar Optical Observations

A Survey of Present and Future Capabilities

Thomas Berger
Lockheed Martin Solar and Astrophysics Lab
B/252
3251 Hanover St.
Palo Alto, Ca, 94304

berger@lmsal.com
Survey of Current Capabilities

Bias: imaging and polarimetry
Excluded: full-disk patrol, networks (helioseismic, space-weather), coronographs

- **KPVT**: Full-disk images and magnetograms
- **McMath Pierce**: 1.52m heliostat all-reflecting telescope
- **VTT**: 0.7m vacuum heliostat reflector, adaptive optics
- **THEMIS**: 0.9m f/16.7 helium pressurized, domed reflector
- **Big Bear**: 0.65m vacuum domed reflector
- **“SVST”**: 0.48m f/45 vacuum turret refractor, adaptive optics
- **DST**: 0.76m f/72 vacuum turret reflector, adaptive optics
- **DOT**: 0.45m f/4.4 open-air reflector, speckle imaging
McMath-Pierce
Kitt Peak, Az.

- 1.52m heliostat all-reflecting off-axis
- Commissioned: Sputnik-era
- Main goal: IR imaging and spectroscopy
- Strengths: large aperture, all-reflecting
- Weaknesses: site, telescope seeing
- Instruments:
 - 0.3 to 20 µm FTS
 - ZIMPOL I visible polarimeter
 - 1 to 5 µm imager and polarimeter
 - 1.56 µm imaging vector polarimeter
 - 6 to 15 µm imager (NASA)
 - 12 µm vector polarimeter (NASA)
McMath 4 µm IR Imaging Example: Acid Rain

IR Continuum

HCl Molecular Line

H₂O Molecular Line

Depth of absorption

Wavenumber

2427.6 2428.6 2429.6 2430.6

H₂O SiO SiO

HCl

Courtesy C. Keller
CO 4.67 μm IR Lines: McMath-Pierce FTS

Courtesy H. Uitenbroek
THEMIS
Tenerife, Esp.

- 0.9m f/16.7 helium pressurized reflector
- Alt-az integrated dome mounting
- Commissioned: March 2000
- Main goal: high precision spectropolarimetry
- Strengths: good site, low instrumental polarization
- Weaknesses: vertical optical bench/complex optical paths
- Instruments:
 - MTR: multi-line spectroscopy
 - MSDP: double-pass imaging spectrometer
 - IPM: birefringent/Fabry-Perot imaging filter system
Na D$_2$ Magnetogram
MSDP 15-min Scan

150 arcsec
Big Bear Solar Observatory
Big Bear, Ca.

- 0.65m vacuum reflector
- Equatorial mount
- Commissioned: 1969
- Main goal: high resolution imaging and magnetograms
- Strengths: very good site, low instrumental polarization
- Weaknesses: dome seeing, instruments on telescope
- Instruments:
 - Video magnetograph
 - Birefringent narrow-band tunable filter
 - 0.2m full-disk Hα telescope
1.56 µm NIR granulation image
BBSO 65cm 3/12/99
Swedish Vacuum Solar Telescope
La Palma, Esp.

- 0.48m f/45 vacuum refractor
- Alt-az turret mount
- Commissioned: 1986
- Decommissioned: 2000
- Main goal: high resolution imaging
- Strengths: excellent site, simple optical paths and lab area
- Weaknesses: none – well, okay: image rotation, inst. polarization
- Instruments:
 - 3m Littrow spectrograph
 - SOUP: birefringent tunable narrow-band imaging filter
 - La Palma Stokes Polarimeter
 - Wide-band imaging filters (G-band, Ca II, etc.)
SVST
Optical Layout
SVST Phase Diversity Imaging

SVST 05-Oct-95 11:08 UT 4305 Å G-band Image
SVST

SVST Raw Image Comparison

G-band

Fe I 6302 Magneto

K-line
Dunn Solar Telescope
Sacramento Peak, NM

- 0.76m f/72 vacuum reflector
- Alt-az turret mount
- Commissioned: 1972
- Main goal: high resolution imaging and polarimetry
- Strengths: good site and design, adaptive optics
- Weaknesses: complex instrumentation
- Main Instruments:
 - Advanced Stokes Polarimeter: spectropolarimeter
 - UBF: birefringent tunable narrow-band imaging filter
 - Wide-band imaging filters (G-band, Ca II, etc.)
DST Adaptive Optics Image
Sum of 4 1.5 sec exposures in G-band
DST/UBF Adaptive Optics Image
Sum of 4 1.5 sec exposures: Fe I 5576 continuum
DST

DST Speckle Imaging Reconstructions

white light

line wing

magnetogram

arcsec

arcsec

arcsec
Dutch Open Telescope
La Palma, Esp.

- 0.45m f/4.4 open-air reflector
- Equatorial mount
- Commissioned: 1998
- Main goal: high resolution imaging
- Strengths: excellent site, open design
- Speckle imaging reconstruction
- Weaknesses: inst. Mount on telescope
- Main Instruments:
 - Focal-plane CCD camera
 DOT Speckle reconstructed G-band image
 AR9359 23-Feb-01

~120 arcsec
DOT

Speckle imaging movie: 22-Sep-99 Sunspot in G-band
Why We Need to do Better

- **Still not resolving the details of convection-flux interactions**
 - Spatial and temporal resolution of current telescopes is inadequate to capture the smallest scale dynamics of
 - Granulation
 - Sunspot penumbras
 - Filaments

- **Polarimetry is photon starved**
 - Vector magnetogram resolution is compromised by need to integrate over several seconds to get adequate S/N

- **Progress in solar science requires “movie processing” not just image processing**
 - Need to have uniform high resolution time series in order to track formation and dispersal of magnetic flux
Numerical MHD Simulation

1 gauss horizontal field at box bottom
23 km grid resolution

6 Mm

50 gauss P-P
3 gauss RMS

Courtesy Åke Nordlund
Numerical MHD Simulation
1 gauss horizontal field at box bottom

200 km FWHM PSF

300 km FWHM PSF

6 Mm

~10 gauss noise floor

Courtesy Åke Nordlund
Numerical MHD Simulation
Micropore Formation Case: 1.5 kgauss field
Vertical Velocity Image

Courtesy Bob Stein
Why We Need to do Better
High spatial resolution polarimetry is photon starved

- **Some simple calculations with a few assumptions:**
 - Unobscured aperture
 - 10% overall efficiency (including detectors)
 - Maximum horizontal motion of 5 km/s
 - Solar image is not allowed to evolve more than half a pixel
 - Spectral resolution of 150,000
 - Nyquist sampled in space (diffraction-limited) and spectrum
 - Look at a single spatial and spectral pixel

- **Need photons for high sensitivity:**
 - 10^{-5} requires 10^{10} photons: typical CCD exposure 10^5, need 10^5 exposures

- **Need photons for high spatial resolution:**
 - 3×10^8 photons/Å/s per diffraction-limited resolution sampling element
 - high spatial resolution magnetic field studies: 0.1 Å, 0.02s, 1% efficiency: only 6000 photons per exposure
 - high spatial resolution polarimetry is rarely very sensitive

Courtesy C. Keller
The Future

- **SOLIS**: Synoptic Optical Long-Term Investigations of the Sun
 - Replacement for the KPVT
 - Full-disk 1 arcsec vector magnetograms, several per day
- **NSST**: New Swedish Solar Telescope
 - Replacement for the SVST: 1m refractor
 - Very high resolution imaging and polarimetry, adaptive optics
- **GREGOR**: Gregorian Telescope on Tenerife
 - Replacement for the Gregory Coude Telescope: 1.5m reflector
 - Very high resolution imaging and polarimetry, adaptive optics
- **ATST**: Advanced Technology Solar Telescope
 - Completely new instrument and site: 4m off-axis reflector, adaptive optics
 - Extremely high resolution imaging
 - Very high sensitivity polarimetry
 - NIR imaging and polarimetry
 - Limited coronagraphic capability
SOLIS
Synoptic Optical Long-term Investigations of the Sun

- 0.5m Vector Spectromagnetograph
- 0.1m Full-disk patrol
- Integrated sunlight spectrometer
- Kitt Peak site
- Equatorial mount
- Status: mount complete, optics in fab, cameras in test
SOLIS/VSM

- **Capabilities**
 - Full-disk scan in 900 sec
 - Spatial resolution: 2 arcsec
 - Spectral resolution: 200,000
 - Polarimetric sensitivity: 2×10^{-4}

- **Polarimetry:** 3/day each of
 - Fe I 630.15, 630.25 nm: I, Q, U, V
 - Ca II 854 nm: I, V
 - He I 1083 nm: I

- **Instrument Features**
 - 0.5m f/6.6 modified RC telescope: low instrumental polarization
 - Active secondary, helium cooled
 - Active Littrow grating, 79 lines/mm
 - Offner reimaging optics: splits spectrum to two cameras
 - 1024 x 256 16μm pixel CCD, backside illum, <35 e- read noise @ 300 f/sec
NSST
New Swedish Solar Telescope*

- 0.92m f/21 refractor
- La Palma site
- Alt-az turret on 17m tower
- Vacuum beam path
- Wavelength range: 390 – 900 nm
- Adaptive optics on the lab bench
- Simplest possible optical paths
 - Only 3 elements between atmosphere and adaptive optics
 - Field lenses/mirrors allow flexible observing modes
- Lead Institution: Swedish Royal Academy, Stockholm Observatory
- Status: turret installed, optics in final figuring; First light: 2002

* Provisional name
NSST

- **Capabilities**
 - Singlet primary lens and relay mirrors: $\lambda/40 - \lambda/30$ wavefront error
 - Adaptive optics corrects up to 15th Zernike mode
 - 390nm PSF HWHM: 0.10 arcsec = 72 km
 - 900nm PSF HWHM: 0.21 arcsec = 145 km

- **Observing modes**
 - High-resolution narrow-band
 - High-resolution achromatic Schupmann
 - Low-resolution full-disk patrol

- **Instruments**
 - Wide-band imaging filters
 - SALAD: imaging vector polarimeter
 - LPSP: La Palma Stokes Polarimeter on 2m Littrow spectrograph
 - ZIMPOL II
NSST
Narrow-band Observing Mode

- Advantages
 - Simplest possible optical path gives maximum image quality at camera

- Disadvantages
 - No correction for singlet primary lens chromatic aberration: only one wavelength in focus at camera and no spectrographic capability
NSST
Wide-band Observing Mode

- Schupmann mirror completely corrects chromatic aberration of singlet primary and moves focus out of vacuum (1.5% magnification).

- Advantages
 - Allows multiple cameras imaging different wavelengths at same focal plane or use of spectrograph
 - Schupmann mirror can be adaptive

- Disadvantages
 - FOV restricted by strong power on corrector system
 - Adds 6 optical surfaces to beam path
NSST

Full-disk Observing Mode

- Large field lens reimages primary at cooled aperture stop

- Aperture stop of 10cm and reimaging lens give full-disk FOV with ~1 arcsec/10 μm pixel

- Uses:
 - Full-disk patrol
 - “Poor-seeing” coordination with satellites
 - Fast Stokes maps of active regions
GREGOR

- 1.5m “Triple Gregorian”
- Site: Izaña, Tenerife
- Open Telescope tube, fully retractable dome (thanks to DOT)
- Alt-az mount
- Lightweighted structure
- Integrated adaptive optics system
- Focus redirectable to two laboratories
- FOV 300 arcsec, $f_{\text{eff}} = 75\text{m}$, $F_{\text{sys}}/50$
- Low Instrumental Polarization
- NIR and possibly TIR capability
- Dead reckoning pointing and tracking
- Lead Institution: Kippenheur Institut for Sonnenphysik
- Status: proposal accepted?
GREGOR
Cross Section

New retractable dome

External mirror elevator

Telescope tube and mount

Retractable windshield

Science foci
GREGOR
Optical Layout

- Triple Gregorian optics
- F/1.75 1.5m SiC primary
- 300 arcsec FOV at F1
- Polarimetric calibration optics at F2
- 110mm pupil at M6 and M7 for adaptive optics
- F/50 tertiary focus, $F_{\text{eff}} = 75m$
- 400nm PSF HWHM: 0.06 arcsec = 41 km
- 1.56µm PSF HWHM: 0.22 arcsec = 160 km

- AO system
 - 66 degrees-of-freedom (corrects to Z10) @150Hz
 - Goal: Strehl ratio > 0.5 for 20% of time
GREGOR
Instrumentation

• **Filtergraph**
 – Redeployment of Gottingen FPI from VTT
 – Installation in main observing room

• **UV Spectropolarimeter**
 – Redeployment of Freiburg POLIS from VTT
 – Installation in main observing room

• **General Purpose Grating Spectrometer**
 – Refurbishment of present Czerny-Turner from GCT
 – Installation in spectrograph room
ATST
Advanced Technology Solar Telescope

- 4m f/4 active off-axis parabolic primary
- Gregorian secondary (and cooling tower)
- Site: ??
- Open telescope structure, retractable dome
- Alt-az mount (not equatorial as shown!)
- Very low scattered light (no spiders)
- FOV goal: 5 arcmin, min = 3 arcmin
- Actively cooled optics: ambient temps.
- Integrated AO
- Wavelength coverage: 350nm – 35μm
- Coronagraphic capabilities (off pointing)
- Lead institute: National Solar Observatory
- Status: proposal to NSF for design study in final draft
ATST

• Capabilities/Goals
 – Scattered light < 10^{-5} at $r/R_{\text{sun}} = 1.1$ and $\lambda > 1 \mu$m
 – 400nm PSF HWHM: 0.02 arcsec = 15 km
 – 4μm PSF HWHM: 0.21 arcsec = 153 km

• Observing Modes
 – Ultra-high resolution imaging
 – 10^{-4} Polarization sensitivity with <1 second integrations
 – High resolution NIR imaging and spectroscopy
 – NIR coronagraphic imaging and polarimetry (if offpointing is ok)

• Baseline Instruments
 – Tunable filter visible imager
 – Visible vector spectropolarimeter
 – NIR imager
 – NIR spectrograph
ATST
Major Challenges

- Everything
- But especially
 - Thermal control: Primary focus heat stop has ~2.4 MW/m² irradiance
 - Active liquid or air cooled optics is a must
 - TIR capability requires ambient temperatures on all telescope structure
 - Contamination control: open design has high particulate loading
 - Scattered light and IR emissivity may require frequent cleaning of mirrors
 - Site: needs very large r_0 (~20-30cm) for significant periods of time
 - Adaptive Optics:
 - DOF $\sim (D/r_0)^2$: r_0 20cm -> 400 DOF adaptive mirror -> 1200 actuators
 - Off-axis design puts skewed pupil on AO mirror
 - Alt-az mount + off-axis optics rotates a variable phase pupil across the AO mirror
 - Multi-conjugate AO required to correct over full FOV