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Abstract. High resolution spectra of lines formed in the wind of evolved
late-type stars suggest that the usual microturbulent assumption is not
adequate to describe the nonthermal motions. We present a NLTE radia-
tive transfer scheme that incorporates turbulent velocity fields with finite
correlation length. In this approach we consider the turbulent velocity
and consequently the intensity to be stochastic variables. This leads to a
generalized equation of transfer having the form of a Fokker-Planck equa-
tion. In a first application we demonstate the general effects of velocity
fluctuations on the line formation in expanding atmospheres.
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1. Introduction

In recent years our knowledge of velocity fields in the atmospheres of late-type
giants and supergiants has grown fast, mainly due to extensive UV observa-
tions with the Hubble Space Telescope (e.g. Harper 2001). Despite considerable
observational and theoretical work, the mechanisms governing the mass outflow
from these stars are still not well elucidated. It is conspicuous that the empirical
measurements of wind parameters for individual cool stars are often controver-
sial and do not lead to unique outflow models.
One reason for these discrepancies might be the simplistic treatment of the
Doppler broadening in the microturbulent limit. It is well known that a finite
velocity correlation length affects strongly the line formation. As a consequence
the derived parameters as terminal wind velocity, acceleration parameter, and
mass-loss rate should be interpreted with care. We have initiated a project to
study the effects of stochastic velocity fields on the interpretation of wind lines
in evolved late-type stars.
The theoretical principles to account for correlation effects were developed by
G. Traving and collaborators (see e.g. Gail et al. 1974; Gail, Sedlmayr & Trav-
ing 1975; Traving 1975). In the framework of a first order approximation the
turbulent velocity and the intensity are considered to be stochastic variables.
As a consequence the classical equation of radiative transfer has to be replaced
by a Fokker-Planck equation. First we present the basic principles followed by
the application to a simplified wind model.
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2. Basic Formalism

In the standard scenario the expansion velocity v(r) increases monotonically
outward and approaches a terminal velocity v∞ at very large distances. For the
sake of simplicity we use the common β power-law description

v(r) = v∞

(

1− R∗

r

)β

.

Superimposed on this general outward motion we consider a turbulent velocity
component vt which is assumed to follow a Markov process. In this framework
the turbulent motion along a line of sight is characterized by a Gaussian one-
point distribution function

W (vt, s) =
1√
2πσt

exp

[

− v2
t

2σ2
t

]

,

where σt denotes the rms turbulent velocity. The conditional probability of
finding at the point s+∆s the velocity vt +∆vt is given by

P (vt +∆vt, s+∆s| vt, s) =
1

σt

√

2π (1− f2)
exp

{

− [∆vt + vt(1− f)]2

2σ2
t (1− f2)

}

,

with an exponential type correlation function

f (∆s) = exp

[

−|∆s|
l

]

.

The correlation length l defines the length scale of the stochastic velocity varia-
tion. Alternatively the velocity vt can be described by a corresponding Langevin
equation

dvt

ds
= −vt

l
+

σt√
l
Γvt(s),

where Γ denotes a Gaussian random variable with a zero mean and a corre-
lation function proportional to the delta function. It can be shown that for
every Langevin equation it is possible to derive a Fokker-Planck equation for
the probability density of the stochastic velocity. Together with the usual ra-
diative transfer equation

dIν
ds

= κν (Iν − Sν) ,

the differential equation for the conditional expectation value of the intensity
qν(Iν , s|vt, s) for a given velocity vt at the point s reads

∂qν
∂s

=
1

l

(

−vt
∂qν
∂vt

+ σ2
t

∂2qν
∂v2

t

)

− κν (qν − Sν) .

The outflow velocity can be incorporated defining a new variable u = vt + vw,
where vw is the projected wind velocity. This leads to the generalized radiative
transfer equation

∂qν
∂s

=
1

l

[

(

vw − u− l
dvw

ds

)

∂qν
∂u

+ σ2
t

∂2qν
∂u2

]

− κν (qν − Sν) .
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The corresponding one-point distribution function changes to

W (u, s) =
1√
2πσt

exp

[

−(u− vw)
2

2σ2
t

]

.

Finally, the expectation value of the local intensity can be obtained by a simple
quadrature

〈Iν (s)〉 =
∞
∫

−∞

W (u, s) qν (u, s) du.

3. Application

To examine the general influence of stochastic velocity fields with finite correla-
tion lengths on the line formation we adopt a two level pure scattering model.
The opacity is assumed to vary according to the equation of continuity and is
parametrized following the formalism of Baade et al. (1996):

κ(r) =
v∞

vdopR∗

κ0

(r/R∗)2 v(r)/v∞
,

where vdop denotes the Doppler parameter containing both the thermal veloc-
ity and the turbulent contribution. The parameter κ0 depends on the atomic
quantities, the stellar radius, the mass-loss rate, and the terminal velocity. We
have chosen a low-velocity outflow as observed in evolved late-type stars. The
parameter β is set to the value 0.5 representing a rapid acceleration. For the
sake of clarity the background spectrum is assumed to be a flat continuum. The
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Figure 1. Mean emergent flux for different values of the correlation
length in units of the stellar radius
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input parameters of our calculations are only chosen to illustrate the correlation
effects. We made no attempt to fit real spectra. In the Figs. 1 - 3 we present the
mean emergent flux, i.e., the emergent intensity integrated over the solid angle.
For comparison we show in Fig. 1 the line profile for the microturbulent limit
(l = 0). It is obvious that with increasing correlation length the profile becomes
weaker. Furthermore we find that the whole profile is shifted towards shorter
wavelength. This trend can be understood by noting that with increasing cor-
relation length large changes of the turbulent velocity get less probable. As a
consequence the interaction probability between differentially moving volume
elements in the wind changes dramatically.
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Figure 2. Mean emergent flux for different values of the ratio σt/vth
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Figure 3. Mean emergent flux for different opacity parameters κ0
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4. Conclusions

We have shown that the line formation in the wind depends sensitively on the
line broadening process due to stochastic large-scale motions. With a refined
input model and a realistic boundary condition we will be able to match the
observed spectra with theoretical profiles. In principle it should be possible to
derive the stochastic parameters of the wind, since optically thin and thick lines
are affected in different ways. The scale length of the turbulent motion will be an
important constraint for the stochastic component of the mass outflow. These
turbulent properties may play a key role to unravel the mass-loss mechanism(s)
in K and M supergiants.
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